Smooth Graphs for Visual Exploration of
Higher-Order State Transitions

Jorik Blaas, Charl P. Botha, Member, IEEE, Edward Grundy, Mark W. Jones,
Robert S. Laramee, Member, IEEE, and Frits H. Post

Fig. 1. A smooth graph representation of a labeled biological time-series. Each ring represents a state, and the edges between states
visualize the state transitions. This graph uses smooth curves to explicitly visualize third order transitions, so that each curved edge
represents a unique sequence of four successive states. The orange node is part of a selection set, and all transitions matching the
current selection are highlighted in orange.

Abstract—In this paper, we present a new visual way of exploring state sequences in large observational time-series. A key advan-
tage of our method is that it can directly visualize higher-order state transitions. A standard first order state transition is a sequence
of two states that are linked by a transition. A higher-order state transition is a sequence of three or more states where the sequence
of participating states are linked together by consecutive first order state transitions.

Our method extends the current state-graph exploration methods by employing a two dimensional graph, in which higher-order state
transitions are visualized as curved lines. All transitions are bundled into thick splines, so that the thickness of an edge represents
the frequency of instances.

The bundling between two states takes into account the state transitions before and after the transition. This is done in such a way
that it forms a continuous representation in which any subsequence of the timeseries is represented by a continuous smooth line.
The edge bundles in these graphs can be explored interactively through our incremental selection algorithm.

We demonstrate our method with an application in exploring labeled time-series data from a biological survey, where a clustering has
assigned a single label to the data at each time-point. In these sequences, a large number of cyclic patterns occur, which in turn are
linked to specific activities. We demonstrate how our method helps to find these cycles, and how the interactive selection process

helps to find and investigate activities.

Index Terms—State transitions, Graph drawing, Time series, Biological data.

1 INTRODUCTION

One of the common ways to visualize state transition sequences is
by using graphs. Each node represents a state, and an oriented edge
between two nodes represents a transition between those two states.
For the exploration of time-series label data, such a graph can be con-
structed by examining all succeeding pairs of states and generating a

e Jorik Blaas, Charl P. Botha and Frits H. Post are with the Data
Visualization Group, Delft University of Technology, NL.

o Edward Grundy, Mark W. Jones and Robert S. Laramee are with the
Visual Computing Group, Swansea University, UK.

Manuscript received 31 March 2009; accepted 27 July 2009; posted online
11 October 2009; mailed on 5 October 2009.

For information on obtaining reprints of this article, please send

email to: tveg @computer.org .

set of edges between the nodes representing them.

While these graphs give a good overview of the transitions between
states, one important aspect is lost in the visualization: the context
in which these transitions occur is not visible. Figure 2 shows how
the first-order transition graph may ambiguously represent multiple
underlying sequences. The leftmost graph could either correspond
to the sequence ABCABCABC..., CDECDECDE..., i.e. multiple repe-
titions of each of the triangles as shown in the rightmost graph, or the
sequence ABCDECABCDECA..., i.e. all states in one long sequence
passing multiple times through C as shown in the middle graph. One
of our goals is to visually disambiguate these two situations. In the
following sections, we elaborate how this can be done by taking into
account higher-order state transitions when drawing the edges. The
middle and rightmost graph representations in figure 2 show how our
method uses curved edges to emphasize the order in which the tran-
sitions occur, which gives each of the two sequences a unique visual
representation.

B D ,f D B D
A ' c; E A C E A@E

First Order

Higher Order (#1)

Higher Order (#2)

Fig. 2. A graph representation of a state transition sequence. The leftmost figure uses classical first order transitions, making it impossible to
distinguish the sequence ABCABCABC..., CDECDECDE... from the sequence ABCDECABCDECA.... The rightmost figures take into account higher-

order transitions to visualize the order in which the state transitions occur.

1.1 Problem Domain

Our method is designed specifically to handle labeled time-series data.
In such data, a set of labels is defined, and each point in time is as-
signed one of these labels. Each of these labels can be seen as a state,
and a change of state then forms a transition. One differentiating char-
acteristic of these time-series data is that it contains information on the
order in which state transitions occur. This also implies that statistical
correlation can exist between the sequence of states taken to arrive at
a node, and the transition taken to leave that node.

We want to be able to visualize these oft-occurring sequences of
states, and we want to emphasize the surrounding conditions in time
under which these occur.

For example, the state C in the sequence ABCDECA... (see Fig-
ure 2), is visited in two different contexts. It can be reached either
from state B, or from state E. The subsequent state is determined com-
pletely by the previous state, as arriving from B means the next state
will be D, and arriving from E the next state will be A.

This correlation between the incoming state and the outgoing state
can be put into a broader perspective by looking at so called higher-
order transitions.

1.2 Higher-Order Transitions

A standard first order state transition is a sequence of two states that
are linked by a transition. A higher-order state transition is a sequence
of three or more states where the sequence of participating states are
linked together by consecutive first order state transitions. Our defi-
nition of a higher-order state transition is derived from that used with
higher-order Markov models.

Representing the conditions, or context, under which transitions oc-
cur is an important task, as it leads to insight into the temporal linkage
between the corresponding states. In other words, the fact that a given
state change depends on the previous state change and has an effect on
the following state change plays in important role in exploring such
phenomena.

We have designed a visual method for representing these higher-
order state transitions. In section 3, we present a representation that vi-
sually disambiguates the higher-order transitions, providing a smooth
graph representation for visualizing state transition sequences.

A major point of novelty is that the presented method uniquely rep-
resents each unique higher-order transition with a curved line in such a
way that any chain of subsequent transitions is visualized in a smooth
and continuous fashion. This makes it not only easy to pinpoint fre-
quently occurring transitions, but it also helps to identify the set of
state transitions that lead to them by implicitly visualizing the tempo-
ral context.

2 RELATED WORK

A state transition graph represents a system of states and state changes.
Each state is represented by a vertex and each state change by a di-
rected edge. State transition graphs are generally represented by sim-
ple node-link diagrams, where each node represents a state and each
link a state transition [13].

These node-link diagrams have been extended with 3-D layout al-
gorithms [11] and also with intelligent 3-D positioning of edges and
nodes that better shows the hierarchy and organization of the state tran-
sitions [19, 18]. Taking a different approach to coping with highly
complex node-link diagrams, Leuschel et al. presented techniques to
reduce the complexity of the underlying state transition graphs by
merging nodes [12].

Holten [8] proposes Edge Bundles for visualizing hierarchical data,
where adjacency relations are bundled together using B-spline curves.
He also shows that such a method can be combined with any of the
existing major tree visualization techniques. Cui et al. [1] also clus-
ter edges within graphs and encode additional information by using
color and opacity. They also employ animation to show intermediate
transitions from the original graph to the edge clustered graph, and
to allow different levels of detail. They smooth polylines to ensure
visually pleasing paths through the graph. Another example of using
curves for graph visualization is given by Eppstein et al. [2] where they
visually identify bicliques in a graph by depicting them using bezier
curves such that each curve passes through the central point for the
biclique. Although these three methods use smooth lines, they do not
use any continuity constraints to represent higher-order sequences as
we do here.

Continuity has long been identified as important to human percep-
tion, and Field et al. [3] demonstrate the ability of the human visual
system to successfully follow continuous paths even against randomly
oriented background paths, or with partially obscured paths. Curves
have been used in parallel coordinates by Theisel [16] to show cor-
relations in non-adjacent axes, and by Graham and Kennedy [5] to
distinguish axis crossing visually through curve continuity.

Ham and Rogowitz [17] carried out a study where participants cre-
ated their own graph layouts which could then be measured to try to
evaluate the importance of various visual features. Through this pro-
cess they are able to provide recommendations for graph drawing al-
gorithms.

Also related to this work are visualization techniques for biologi-
cal sensor data including Ware et al. [21] where accelerometer data
was visualized using TrackPlots, which enabled scientists to check the
theory that whales roll onto their sides for specific prey capture, and
Grundy et al. [6] where spherical plots, spherical overlays, spherical
histograms and a posture state graph are shown to be effective at lead-
ing to biological understanding

Pretorius et al. [14, 13] presented a unified approach to visualize
highly complex state transition graphs, employing node-link diagrams
to visualize a hierarchical clustering of the different states, the bar
tree to visualize the number of occurrences of states and finally an
arc diagram to visualize the actual state transitions. A method was
also presented whereby multivariate graphs could be more explicitly
explored: Nodes are arranged in a source group and a target group, and
all edges are shown in between [15] and queries can be interactively
performed. This method was also applied to state graph visualization.
Herman et al. [7] provide a good survey of graph drawing techniques
specifically aimed at information visualization.

All of the mentioned techniques have as one of their major goals

FLY

DIVE FLOAT

Fig. 3. Smooth graph representation of a set of two state sequences:
FLY, DIVE, FLOAT in red and FLOAT,DIVE,FLOAT in green. Note the dupli-
cate edges between DIVE and FLOAT

successfully coping with the high complexity of most state transition
graphs. However, none of them take into account higher order state
changes, i.e. state changes where the context, the states before and
after the current state change, plays an important role. None of the
techniques are able to visualize or represent these higher order state
changes in any way.

The method that we present in this paper explicitly represents
higher order state changes, thus enabling the exploration of state tran-
sition graphs where the context of a state change is important.

3 METHOD

A number of Gestalt principles exist that are applicable to the design
of visual representations, as discussed by Ware [20]. In the design of
our visual representation we focus on three aspects in particular: con-
tinuity, connectedness and closure. The principle of continuity states
that elements that make up a smooth and continuous shape are more
likely to be perceived as a visual entity. The connectedness princi-
ple entails that a relationship can be expressed by graphical objects
by for example connecting them with lines. This principle is one of
the prime principles of node-link diagrams, and a common method for
visually representing relationships between entities. Closure implies
that closed shapes are likely to be perceived as a single entity. We
want to make sure that closed shapes likely occur where interesting
patterns emerge, so as to focus on the cyclic patterns.

3.1 Design goals

Based on the principles above, we have formulated two main de-
sign goals. Firstly, each higher-order transition should be represented
uniquely. Secondly, the visual representation should be continuous
and smooth.

3.1.1

When each higher-order transition is uniquely represented visually,
each state in the transition influences the form, so that the combina-
tion of all states in the transition together uniquely identifies the shape.
Since a first-order transition can occur as part of several higher-order
transitions, this requires that edges are duplicated.

Figure 3 illustrates how this applies to a real-world example. Ma-
rine birds that dive have two different types of diving behavior, they
either dive from flight, or they dive while swimming. In the analysis
of our labeled time series, distinguishing between a dive that is initi-
ated from flight and one that is initiated from a swimming position is a
frequently occurring task. If we take into account second-order transi-
tions, then the DIVE, FLOAT transition is part of the two second-order
transitions FLY, DIVE, FLOAT and FLOAT, DIVE, FLOAT.

Instead of having to query the state sequences explicitly for the two
patterns, our goal is to incorporate the higher-order information into
the visualization, making a visual distinction between the two occur-
rences.

Uniqueness

Fig. 4. Smooth spline interpolation of third order transitions, using a
fourth order spline. Each of the colored segments is drawn by fitting a
smooth curve through the four points of the same color.

3.1.2 Continuity

As the transitions that we visualize are all part of a longer sequence, we
also want to make this clear in the visual representation. We constrain
the visual representation of the edges in such a way that the longer
sequence of transitions that links these edges together still forms a
continuous and smooth curve. We aim for angular smoothness, as this
makes it easy for the human eye to track corresponding edges that
go through a node, linking the incoming edges to the corresponding
outgoing edges in an intuitive fashion.

3.2 Techniques

We have designed a set of techniques that fulfill both design goals,
while maintaining a representation that is close the classical graph-
based layout. The techniques we have selected to build the smooth
graph representation are as follows: 2D Graph Layout, Smooth N-
th Order Interpolation, Edge Bundling, Interaction, Directionality
Through Texturing. Each is discussed in more detail in the follow-
ing sections.

3.2.1 2D Graph Layout

The states and transitions are visualized using a two dimensional graph
layout. The main advantage of a two dimensional graph layout is that
this allows for an intuitive representation of states (as nodes), while
providing us the freedom to use curvature when drawing the edges.
Also, the extra degrees of freedom introduced by using curved lines al-
low us to enforce smoothness and continuity constraints on the edges.

As a first step, we perform a classical 2D graph layout, based only
on the first order transitions. From the existing graph layout algorithms
in the literature, we have chosen to use the Fruchterman-Reingold
force directed layout algorithm [4], a simple and robust algorithm that
yields satisfactory results.

Once the layout algorithm is done, the locations of the nodes are
set, but further refinements of the location may be made during the
interaction process by the user. This allows the user to modify the
proximity of the nodes so that visual groups can be built during the
exploration process, as the knowledge the user has of the underlying
phenomena grows.

3.2.2 Smooth N-th Order Interpolation

As stated in section 3.1.1, one goal is to visualize each unique higher-
order transition individually. Since multiple higher-order transitions
may contain the same first order transitions, there may be multiple
edges between a pair of nodes that belong to different higher-order
transitions.

A good vehicle for maintaining continuity and smoothness through-
out all edges is to use interpolating splines. The user decides upon the
transition length, N, and then we use the Catmull-Rom spline, so that
each Nth-order transition can be represented by a spline of order N+1,
as it should smoothly interpolate through N+1 nodes.

The advantage of this method is that the segments for successive
transitions form one smoothly connected spline (see Figure 4), since
the overlap between the higher-order transitions enforces smoothness
along the connecting edges. This continuity constraint therefore guar-
antees that the entire state sequence, or any sub-sequence thereof, can

be followed visually as a continuous line, greatly enhancing the visi-
bility of the order in which states occur.

The only place where lines overlap, is where the higher-order tran-
sition is exactly the same, so where not only the from-and-to nodes of
an edge are the same, but where the entire sequence of N+1 transitions
is the same.

3.2.3 Edge Bundling

Since each higher-order transition maps to exactly one edge trajectory,
we can bundle edges based on the frequency of the transition. We
modulate the thickness of the edges to represent the number of times
the transition was taken.

This is an implicit form of edge bundling, as all the edges taking
part in a bundle are never explicitly drawn. Each unique state se-
quence, no matter how many times it occurs, is only drawn once, with
thickness representing the number of occurrences. The thickness mod-
ulation makes it easy to track the frequently occurring transitions, and
to find frequently occurring cycles within the data.

3.2.4

To further inspect the state sequence, interactive selection can be used
to investigate the graph. To assist the user in finding transitions of
interest, we designed a user interface to incrementally build a con-
strained selection. The user can create such a selection by sequentially
clicking on a number of nodes. All edges that connect the selected
nodes in order then become part of the selection, and are visually high-
lighted (see Figure 7).

The selection process employs three steps. First, the starting state is
selected by clicking. Then visual feedback is given by highlighting all
possible continuations of the currently selected sequence, after which
the selection criteria can be extended by selecting additional nodes.

By using color to highlight the selected edges, there is no need to
make any changes to the layout of the nodes, which improves the vi-
sual coherence.

As we will demonstrate in section 5, the selection can be rapidly
linked to correspond with all the ranges in time at which the selected
sequence of transitions occurs.

As a secondary form of interaction, the nodes of the graph can be
rearranged by the user. This creates direct feedback on which edges
contain the moved node in their higher-order transition, as all these
spline edges will interactively change shape when the node is moved.

Ware and Bobrow [22] have demonstrated that this class of dy-
namic highlighting, particularly when combined with other highlight-
ing methods (static highlighting through coloration and motion high-
lighting using crawl edges, see section 3.2.5), is a useful aid for large
graph querying.

Interaction

3.2.5 Directionality Through Texturing

Classically, arrowheads are often used in graphs to visualize the direc-
tion of an edge. In our case, we want to be able to preserve the visual
continuity that the edges have throughout nodes. Arrowheads distort
the perception of the continuous spline, so we have opted for a basic-
yet-effective approach of using texturing to visualize the orientation of
the edges (see Figure 5).

Each edge is longitudinally split into two halves and each of these
gets assigned a thickness, or width, based on the number of times that
the transition in the corresponding direction occurs. A cyclically re-
peating texture is applied to each of the halves, and is animated in the
direction of the state change that it represents in order to enhance its
representation.

This is reminiscent of the approach presented by Wegenkittl et al.
for the visualization of continuous state changes, called trajectories,
through the four-dimensional state space of the Wonderland econo-
metric model [23]. They employed spiral textures that were animated
in the direction of the state change, mapped to the tube representing
that trajectory.

Our texturing scheme proved flexible enough for later customiza-
tion, so that further experiments can be done to find an optimal visual

4

y Oy)y Oyl

Fig. 5. Edges drawn with four different textures, from top to bottom:
solid, striped, stippled and gradient. The left column shows the texture
used, while the right column shows the resulting graph.

ABCABABC

LE Key Timestamps
»CAB (3, ...
»BCA 2,...
————»BAB (5, ...
> ABC (16, ...
— > ABA 4, ...

Fig. 6. Contents of the hash table after storing the sequence ABCABABC

representation for the directionality. As frequently used in flow visu-
alization, we currently use an intensity gradient along the direction of
the line to indicate orientation of the edges.

4 IMPLEMENTATION AND PERFORMANCE

We have implemented the proposed method as a functional component
within a larger experimental data-exploration system. As the focus of
the system lies on the exploration of large time-series data, we have re-
quired that all queries and drawing are performed at highly interactive
frame-rates, even for larger data sets.

We use tuple hash tables to make searching the higher-order transi-
tions efficient (see Figure 6). As the problem is similar to fixed-length
string searching, a multitude of methods are available to efficiently
count and enumerate the time-points at which a specific sequence of
states occur. The hash table uses the Nth order transitions as keys, and
maps those to a sorted array of time-points at which the corresponding
sequence occurs.

These hash tables can not only be used to determine the width of
each drawn edge (through counting the number of occurrences), but

Fig. 7. The stages of the selection process, from left to right: A starting node is selected and three additional nodes are added to the sequence

Transition Edges Edges
Order (N) | (5 states) | (10 states)

1 18 41

2 40 108

3 70 238

4 105 440

5 142 689

6 188 989

Table 1. The total number of edges in the graph for a real-world data-
set of 1 million samples, as a function of the order of the transition. The
original multi-scalar data was clustered with a chosen number of labels.
The two columns show the results for 5 and 10 labels respectively.

they can also be used to perform the queries needed during the se-
lection process. Once a selection of states has been made, the hash
table can be queried to find all sequences that start with the selected
sequence. When a limited range of time-points is to be examined, a
binary search in the sorted time-point array suffices to filter the results.

Since each unique higher-order transition only has to be drawn
once, the rendering is fast, even for large numbers of samples. Though
the drawing of curved lines is a relatively slow operation, the number
of edges drawn is sufficiently low that this does not impede overall
performance.

In our data-set of one million data points and 10 unique labels, the
number of 3rd order edges that had to be drawn was only 238. While
in random state sequences the number of unique Nth order transitions
scales exponentially with N, in natural data the number rises fairly
slowly (see Table 1).

The drawing of both nodes and edges was implemented in OpenGL.
The curved edges are drawn using strips of triangles, so that the thick
curved edges can be filled efficiently. The total time it takes to draw
a graph with 238 edges and 10 nodes is below 5 milliseconds on a
modern workstation. This allows for the entire application to be used
interactively. Figure 8 shows a snapshot of the rendering.

5 APPLICATION: BIOLOGICAL SENSOR DATA

The motivation behind the development of this visualization tool, as
shown in Figure 9, was to enable researchers (biologists) to inter-
actively explore biological sensor data. The multi-attribute data is
collected from sensors attached to animal subjects over durations of
hours to days at a frequency of 10—20Hz. This results in a large time-
span (many hours/days) of small-scale behavior (tenths of seconds for
scratching behavior to a couple of minutes for a diving behavior). The
tags record data from an accelerometer, a magnetic compass and en-
vironmental sensors. Due to the large volume of data and complex
inter-relationships at play between the different sensor channels the
behavioral data is difficult to analyze, and requires extensive experi-
ence to interpret. Currently, tracking data is visualized as primitive,
2D time series plots (the ScalarView in figure 9), and analysis is based
upon simple summary statistics. Interpreting and drawing conclusions
about behavior from accelerometer data requires a great familiarity

with both the behavior of the subject (to aid interpretation), and a great
wealth of experience of working with accelerometer data of this form.
Cognitive integration of experience with a scalar view of the data al-
low researchers to make statements about the behavior of the animal
within its environment.

The cognitive cost can be reduced by employing clustering tech-
niques upon the data, and visualizing the resulting cluster labels as
part of the scalar view. This presents a good summary visualization,
but for long time series data, it is still difficult to understand the be-
havior of the animal (for example by identifying the predominant be-
haviors or determining any unusual behaviors). The color bars above
the scalar data in figure 9 give one example of visualizing the cluster
information.

We have previously shown [6] that clustering and visualizing the
data using spherical plots, spherical overlays, spherical histograms and
a posture state graph are effective at leading to biological understand-
ing. In that work, the biggest aid to simplifying a large data set is
the Posture State Graph (PSG). For PSG visualization, each cluster is
represented as a node in the graph, and then any transition between
nodes is represented as an edge. Edge width can identify the number
of transitions between nodes. Nodes correspond to particular orien-
tation and behaviors and therefore present a visual summary of the
data. In actual use, the most productive mode was to mix the spherical
plot with overlay and PSG which gave good contextual information
regarding predominant behaviors, leading to insight about behavioral
sequences of the animal. The main problem with such a view was that
it became cluttered. It presented a good overview, but still required
some effective interaction to understand the relationship between pre-
dominant behaviors, unusual behaviors or to appreciate the time spent
during particular behaviors.

The new smooth graph visualization directly addresses the problem
of visual clutter by removing the need to have contextual information
in the same window. Secondly through the use of curves, higher order
transitions can be identified, which provides visual feedback of be-
havioral sequences, and edge bundling allows a simple appreciation of
the frequency of those behavioral sequences, neither of which could
be achieved without extensive interaction in previous visualization ap-
proaches.

The following sections introduce the multiple linked views of the
exploratory framework and the different aspects of the data each
presents. Some example explorations of the data will be given, with
the insight the new approach provides.

5.1 Components

The screen is split in four viewports (see Figure 9): the GraphView, the
SelectionView, the ScatterPlot and the ScalarView. The ScalarView
displays the original scalar attributes measured at each time-point in a
chart. This allows the user to see the scalar values that were used as a
basis for the clustering step. As an overlay above this data, the states
are visible as a colored bar. Colors are consistently chosen so that
throughout all visualization the same color corresponds to the same
cluster label. If a selection is active, for example for a specific se-
quence of states, then a secondary bar highlights all the ranges in the

LI

Underw",ater Swiimmin
Hf_f'_ * °
L

Diying

Fig. 8. Comparison between first-order (left) and third-order (right) state transition visualization. Notice how the edge between diving and underwater
swimming consists of just a single line, even in the third-order representation. This directly indicates that this transition only occurs from within a
single context, so there can be only a single specific node that precedes the transition, and there can be only a single specific node that succeeds
it. Following the smooth edge in both directions, it is clear that the succeeding node is the top one, while the preceding node is apparently positions
to the far left of the graph.

Fig. 9. A screenshot of the user interface of the exploratory application. The three views on the top of the screen represent (from left to right) the
GraphView, the SelectionView and the ScatterPlot. The bottom of the screen shows a ScalarView in which both the accelerometer measurements
as well as the assigned labels are shown.

time-series that match the current criteria. Since the number of data
samples can be in the order of millions, the user can freely and quickly
zoom in and out to focus on specific ranges in time, similar to [10].

The SelectionView gives an instant overview of the currently se-
lected sequences. It depicts the time spent in each of the states within
the selected sequences. Through this basic visual representation it pro-
vides the ability to make selections based on properties such as total
duration of the sequence. This has been a valuable utility to spot and
remove ‘bad’ labels that were introduced due to noise, as these often
have a very short duration. The SelectionView also works as an aid to
navigating the ScalarView, as when the displayed bars are clicked, the
ScalarView will smoothly zoom to the corresponding time range.

The ScatterPlot displays a multi-attribute scatter-plot of the current
selection, assisting in finding correlations between attributes. To cope
with the large amount of data samples the points are rendered trans-
parently, to keep the generated image clutter-free.

The GraphView links all the previously presented views by provid-
ing the main means of state space exploration. The previously de-
scribed selection process is fully integrated into the linkage between
the views, so that during the construction of a selection set, all views
correspond to the data associated with the selection. To cope with the
limited amount of screen space available in this split-screen scenario,
the graph view supports both zooming and panning, so the area of in-
terest can be changed interactively.

5.2 Exploration

To examine the performance of our method on real-world data, we
have used the exploratory framework to analyze a data-log containing
sensor information from a penguin. Over the entire course of the log,
several different activities occur, such as diving and swimming. The
data is labelled using a k-means clustering algorithm which assigns
labels based on the posture information extracted from the accelerom-
eter data.

5.2.1 Finding Repeating Patterns

When exploring the penguin data, we are interested in finding the main
activities, and then reasoning about any activities that follow a differ-
ent pattern. The clustering identifies the various states of the animal,
and when related to body posture these can be labelled as seen in fig-
ure 10 (diving, underwater swimming, ascent, steep ascent and surface
swimming). The edges show where transitions occur between states,
edge thickness shows the frequency of those transitions, and edge con-
tinuity shows behavioral sequences within the data.

Over and above the visual information provided by previous tech-
niques, researchers can now see a summary of the behavioral se-
quences and can begin to reason about the animal from just a static
view of the data. For instance we can see a continuous path going
from diving, through underwater swimming, ascent, steep ascent, and
back to diving. This shows the main cycle of a feeding penguin (we
shall call this a dive sequence in the following). By selecting that path
(figure 11) we are then presented with further statistical summary in
the form of the SelectionView which shows us that the dive sequence
lasts about 15-20 seconds in the majority of cases. By selecting one of
the dive sequences in the SelectionView, the ScalarView shows us the
original scalar data where the biologist can verify that this labelling is
correct through the pattern known from experience.

In fact the full dive sequence involves another selection of “diving”
before the penguin enters the surface swimming state. This is due to
the classifier interpreting the body orientation the penguin adopts as it
exits the water (to avoid its inherent buoyancy from projecting it out
of the water), being similar to that when it prepares to dive.

During development we found it useful to include the ability to sort
the SelectionView by the total duration of the sequence. In this case it
clearly shows the expected normal distribution for dive length.

From the GraphView we can see another thick path between Sur-
face Swimming and Diving. This is the penguin performing shallow
dives in order to swim efficiently just below the surface, before surfac-
ing to breathe, and then diving again. The SelectionView shows that
each lasts about 5 seconds. Sometimes it dives a little bit deeper, and

Surfage

Fig. 10. Smooth graph of 5 states in penguin data set. The data has
been classified into the states shown using k-means clustering. The
label colors correspond to the color bar in the ScalarView and the indi-
vidual selection bars as seen in Figure 11.

goes through the ascent and steep ascent transitions (but this is a rare
occurrence in the data as conveyed by the thinner edge transitions).

5.2.2 Noisy Data

Another advantage of the higher-order visualization is that the edges
that move back-and-forth between two nodes repeatedly are separated
from the edges that make the transition as part of a complex higher
order transition. For example, the thick straight edge between Surface
Swimming and Steep Ascent indicates that many transitions occur be-
tween these two nodes. We can examine this phenomenon closer by
building a selection from Surface Swimming to Steep Ascent and back
again. Through examining the SelectionView, we learn that the du-
ration of these two states is often very short, as the colored bars are
fairly short. When we select one of the bars, the scalar view zooms
in on the time range of the occurrence and we can establish why there
are so many back-and-forth transitions. Looking at the scalar values,
we see no particular patterns that warrant these erratic state changes,
as indicated by the label bar on top of the figure.

The logical explanation for this is that the boundary between these
two clusters is particularly sensitive to noise, therefore values that are
in between the two clusters are often misclassified. As our sensor
data is inherently noisy, this particular group of transitions should be
refined before further analysis. Another course of action can be to de-
cide that the two states probably refer to a very similar posture, and
that they should therefore be merged into a single state. We can visu-
ally perform this action by positioning the two nodes on top of each
other, or we can reprocess the label data and substitute one state for
the other to get rid of the state entirely.

6 CONCLUSIONS AND FUTURE WORK

We have presented a novel visual representation for state transition
graphs that focuses on the temporal coherence between sequences of
transitions. Our representation uniquely visualizes higher-order state
transitions using a smooth spline representation for the edges. The
method we designed adheres closely to the principles of continuity,
connectedness and closure.

The higher order transitions are represented as curved lines in such
a way that each sequence of states forms a smooth continuous curve
through their respective nodes. The visual continuity of the curve
is easily tracked by the human eye, making correlations between in-
going edges and out-going edges visible in an intuitive way. The con-
tinuity holds for state sequences of arbitrary length.

The fact that the presented method uniquely represents each Nth-
order state transition visually has proven useful in finding frequently
occurring state transitions in noisy real world data. We have demon-
strated this and other issues by exploring a real-world dataset.

The limitations of our method manifest when there are either a large
number of states to visualize, or when even higher order state transi-

y
=X . .
Underwate(\Swnn ming
]

. 3

"’—& =i
ALIVINGE, o ™
'f‘ 1

0 56|

lection, Iast clic

Fig. 11. Selection of the penguin’s feeding cycle by querying the sequence of nodes corresponding to diving, underwater swimming, ascent, steep

ascent, diving and surface swimming.

tions need to be visualized. In both cases the visual complexity in-
creases greatly, complicating the use of our method. In the former
case, the number of nodes will serve to clutter the display and leave
little room for routing the edges. In the latter case, the higher order
of transitions simply leads to more permutations of the spline inter-
polation, or more types of edges. This can also be seen in table 1,
where increasing the order of the transitions leads to an exponential
increase in the number of edges. However, for the datasets we have
experimented with up to now, neither of these limitations has posed
any problems.

In future work, we are planning to investigate whether the idea of
representing higher order state transitions using curved edges can be
successfully applied to other state transition graph visualization meth-
ods in addition to two dimensional node-link diagrams.

We are also planning to continue our investigation into the visual-
ization of oriented edges by using animated texture, taking into ac-
count the recent work by Holten and van Wijk [9].

Although tested through investigation with a biological sensor
dataset, it is also important to evaluate the performance of curved
edges when employed for typical tasks. We are planning a user study
of the type carried out by Ware and Bobrow [22], and Holten and van
Wijk [9]. In particular we flag that the choice of an appropriate basis
for comparison will require a careful experimental design.

ACKNOWLEDGMENTS

We would like to thank Rory Wilson of the Institute of Environmental
Sustainability (IES) at Swansea University for the penguin data set.
This research is supported by the Netherlands Organisation for Scien-
tific Research (NWO), project number 643.100.503 MEMV.

REFERENCES

[1] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-based edge
clustering for graph visualization. [EEE Transactions on Visualization
and Computer Graphics, 14(6):1277-1284, Nov.-Dec. 2008.

[2] D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent layered draw-
ings. Algorithmica, 47(4):439-452, 2007.

[3] D.J.Field, A. Hayes, and R. F. Hess. Contour integration by the human
visual system: Evidence for a local "association field”. Vision Research,
33(2):173-193, 1993.

[4] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Softw. Pract. Exper., 21(11):1129-1164, 1991.

[S] M. Graham and J. Kennedy. Using curves to enhance parallel coordinate
visualisations. In Proc. Information Visualization, pages 10-16, 2003.

[6] E. Grundy, M. W. Jones, R. S. Laramee, R. P. Wilson, and E. F. Shepard.
Visualization of sensor data from animal movement. Computer Graphics
Forum (Eurovis), 28(2):815-822, 2009.

[7]

[8]

[9]

(10]

(1]

[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[22]

(23]

I. Herman, G. Melancon, and M. Marshall. Graph visualization and nav-
igation in information visualization: A survey. [EEE Transactions on
Visualization and Computer Graphics, 6(1):24—43, Jan-Mar 2000.

D. Holten. Hierarchical edge bundles: Visualization of adjacency rela-
tions in hierarchical data. IEEE Transactions on Visualization and Com-
puter Graphics, 12(5):741-748, Sept.-Oct. 2006.

D. Holten and J. J. van Wijk. A user study on visualizing directed edges
in graphs. In Proc. CHI '09, pages 2299-2308, 2009.

D. Jerding and J. Stasko. The information mural: a technique for display-
ing and navigating large information spaces. Visualization and Computer
Graphics, IEEE Transactions on, 4(3):257-271, Jul-Sep 1998.

T. Jéron and C. Jard. 3d layout of reachability graphs of communicating
processes. In GD ’94: Proceedings of the DIMACS International Work-
shop on Graph Drawing, pages 25-32, 1995.

M. Leuschel and E. Turner. Visualizing larger state spaces in ProB. In
Proceedings of the International Conference of B and Z Users, 2005.

A. Pretorius. Visualization of State Transition Graphs. PhD thesis, Eind-
hoven University of Technology, 2008.

A. J. Pretorius and J. J. van Wijk. Visual analysis of multivariate state
transition graphs. [EEE Transactions on Visualization and Computer
Graphics, 12(5):685-692, 2006.

A.J. Pretorius and J. J. van Wijk. Visual inspection of multivariate graphs.
Computer Graphics Forum, 27(3):967-974, May 2008.

H. Theisel. Higher order parallel coordinates. In B. Girod, G. Greiner,
H. Niemann, and H. Seidel, editors, Proc. Vision, Modeling and Visual-
ization 2000, pages 119—-125, Saarbriicken, 2000.

F. van Ham and B. Rogowitz. Perceptual organization in user-generated
graph layouts. IEEE Transactions on Visualization and Computer Graph-
ics, 14(6):1333-1339, Nov.-Dec. 2008.

F. van Ham, H. van de Wetering, and J. J. van Wijk. Visualization of state
transition graphs. In Proc. IEEE Information Visualization, pages 59-66,
2001.

F. van Ham, H. van de Wetering, and J. J. van Wijk. Interactive visualiza-
tion of state transition systems. IEEE Transactions on Visualization and
Computer Graphics, 8(4):319-329, 2002.

C. Ware. Information Visualization: Perception for Design (Morgan
Kaufmann Interactive Technologies Series). Morgan Kaufmann Publish-
ers, 1st edition, 2004.

C. Ware, R. Arsenault, M. Plumlee, and D. Wiley. Visualizing the un-
derwater behavior of humpback whales. IEEE Computer Graphics and
Applications, 26(4):14-18, July-Aug. 2006.

C. Ware and R. Bobrow. Motion to support rapid interactive queries on
node-link diagrams. ACM Transactions on Applied Perception, 1(1):3—
18, 2004.

R. Wegenkittl, M. E. Groller, and W. Purgathofer. A Guided Tour to Won-
derland: Visualizing the Slow-Fast Dynamics of an Analytical Dynamical
System, Apr. 1996. human contact: technical-report@cg.tuwien.ac.at.

